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Climate change impacts on crop production in Busia and Homa Bay 
counties, Kenya 

Eike Luedeling, World Agroforestry Centre 

 

1. Introduction 
Climate change is expected to impact crop production in the Lake Victoria Basin, yet little 
quantitative information is available on the extent and direction of these impacts. Without such 
quantitative information, however, developing appropriate adaptation strategies is difficult. While 
it may seem to make sense to promote measures that make farmers less vulnerable to climatic 
variability, such measures may not be economically recommendable. For example, putting in 
place irrigation infrastructure makes crops less vulnerable to water shortages, but this is only 
appropriate if there is a current or future risk of drought. If there is no such risk, purchasing 
expensive irrigation equipment would be a bad investment for most farmers. 

It is therefore important to anticipate effects of future climate change as accurately as possible 
and identify those climatic factors that represent the greatest risk of compromising food security. 
Once these factors have been identified, appropriate and quantitatively informed adaptation 
strategies can be devised. This study attempts to accomplish this for two counties on the 
Kenyan shore of Lake Victoria, Busia and Homa Bay, as well as for surrounding areas. The 
current and future suitability of this region for major agricultural crop was evaluated using a 
range of methods. 

Doing such an analysis is impaired by a striking shortage of necessary input data. Except for 
isolated rainfall data, there are essentially no long-term weather records for either district. This 
means that even current climate cannot be reliably characterized, placing constraints on the 
accuracy, with which the future can be projected. Targeted climate change projections for the 
study region have also been scarce, for the same reasons. Observations of local weather are 
needed for calibrating climate models, and where no records are available, the accuracy of 
climate models is questionable. Similarly, soil information for the study region is scarce, yet soil 
data is an essential input into any crop model. Finally, information on what crop varieties 
farmers grow, how these respond to climate, and how exactly they are managed, is unavailable. 
Some of this information could be obtained through detailed fieldwork, and recommendation will 
be made on how to go about improving the site-specific validity of modeling efforts. For the 
purposes of the current study, however, best-bet proxy datasets were used to arrive at the 
conclusions presented here. This study therefore provides a rough indication of the impacts of 
climate change on the production of major crops in the study region. It also presents an 
evaluation of which climatic factors are the most likely constraints for production of the various 
crops. Yet the results of this study should not be taken as completely accurate, because of the 
host of unknowns about essentially all important factors of climate, soils and cropping systems. 
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2. Methodology 

2.1. Historic weather data 
Reliable climate data for the target region is scarce and of limited usefulness for climate change 
projection. Long-term weather station records from stations within the study area are only 
available for rainfall, whereas temperature records are limited to a small number of years, long 
in the past. Outside the study region, consistent weather records exist for a few stations, such 
as Kisumu, Kakamega and Kisii. While these stations lie in the geographic vicinity of the study 
counties, they are not necessarily climatically comparable, due to their positions directly at the 
lakeshore (Kisumu), or at higher elevation (Kisii and Kakamega). In addition to limited suitability 
as a proxy for climate in Busia and Homa Bay, station records also had gaps and were lacking 
information on radiation, both of which reduce their suitability for subsequent analysis steps. 

As an alternative source of climate information, the SLATE dataset produced by the 
HarvestChoice project was used in this study (White et al., 2008). This dataset combines daily 
observational records from the NASA-POWER dataset (for 1997-2008 at 1 degree resolution) 
with the results of climate model runs from the Climate Research Unit at the University of East 
Anglia (for 1901-2006, at 0.5 degree resolution), resulting in a 100-year (1906-2005) record of 
daily weather information (temperature extremes, rainfall and radiation) for all of Sub-Saharan 
Africa at 0.5 degree resolution. The SLATE dataset was used for all subsequent downscaling 
steps. 

2.2. Climate change projections 
Three climate models were chosen for the analysis. Due to the short project duration, inclusion 
of more models was not possible, because model runs could not have been completed for a 
larger array of scenarios. The following three General Circulation Models were selected: 

HADCM3 - Hadley Centre Coupled Model, version 3  

CCCMA CGCM2 - Canadian General Circulation Model 2 by the Canadian Centre for Climate 
Modelling and Analysis  

CSIRO Mk2 - CSIRO Atmospheric Research Mark 2b 

For all models, the statistically downscaled versions provided by the CGIAR Research Program 
on Climate Change, Agriculture and Food Security (CCAFS; http://ccafs-
climate.org/download_allsres.html) were used for analysis. These projections have a spatial 
resolution of 2.5 min (approx. 25 km in the study region), and are available for two IPCC 
greenhouse gas emissions scenarios (A2a - 'business as usual' emissions; and B2a - reduced 
emissions), and three points in time (2020s, 2050s and 2080s). CCAFS also provides baseline 
climatology for the time span 1950-2000 (Hijmans et al., 2005), which was used as a reference 
scenario. 

2.3. Downscaling methodology 
All climate scenarios used only provide monthly means of important weather variables, which 
are not sufficient for capturing variation in crop production due to climate variability. 
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Consequently, models were temporally downscaled using the LARS-WG weather generator 
(Semenov, 2008). This tool uses daily weather data for a particular location to estimate climatic 
site parameters, which statistically describe rainfall, temperature extremes and radiation at the 
location, with separate distributions for wet and dry spells. Based on these parameters, LARS-
WG can then be used to generate synthetic weather records, with the same characteristics as 
the original record. It is also possible to modify this process by including changes to monthly 
means of all climate variables extracted from climate change projections. The results can then 
be used to simulate climate change effects on biological processes at high resolution (e.g. 
Luedeling et al., 2011a; Luedeling et al., 2011b) 

Weather generator parameters were computed from all locations from the SLATE database, 
located within a rectangular area spanning 3.75°S - 3.75°N and 31.25°E to 38.75°E. For all 200 
stations, site parameters were calculated from SLATE's 100 years of daily weather. The spatial 
resolution of this dataset is only 0.5 degrees, so that only about 3 sites would have been located 
in the vicinity of Homa Bay and Busia counties (and only 2 in the counties). To enhance the 
resolution, each site parameter produced by the weather generator was extracted from the 
generated site files and spatially interpolated using the Kriging technique. The almost 6000 
resulting grids were then sampled at selected locations within the study area, and LARS-WG 
parameter files were assembled for each location. The resulting set of 36 stations covered the 
entire study region at a spatial resolution of 0.2 degrees, corresponding to approximately 20 km. 

Climate scenarios for downscaling were obtained by sampling all monthly layers of minimum 
temperature, maximum temperature and precipitation for the three GCMs, for the A2a and the 
B2a greenhouse gas emissions scenarios. A2a is the 'business-as-usual' scenario, whereas 
B2a includes a gradual transition towards a low emission society. Consequently, climatic 
changes are typically greater in the A2a than in the B2a scenario. For each combination of GCM 
and greenhouse gas emissions scenario, projections for three time slices were used: the 2020s, 
the 2050s and the 2080s. Additionally, a climatic baseline was obtained from the WorldClim 
database. This data layer was generated with the same technique as CCAFS’ climate 
projections, ensuring a cohesive dataset. From the resulting set of climate parameters, LARS-
WG scenario files were prepared for all 684 combinations of site and climate scenario. Based 
on these files and the reassembled site parameter sets for each location, the weather generator 
was used to produce 25 years of synthetic daily weather data for each scenario. These 25-year 
records are not time series. They rather constitute 25 replicates of a given year’s weather, 
spanning the range of weather situations that can plausibly be expected. Variation in these 
records is introduced by a random seed, ensuring that weather is variable, but within the 
confines dictated by the site parameters and climate scenarios. 

2.4. Soil data 
As with weather data, soil data for Kenya is scarce. Some surveying work has been done within 
the Fertilizer Use Recommendation Project, but this effort only included 6 sites within the study 
districts (Bukiri-Buburi and Alupe in Busia and Rodi Kopany, Rongo, Homa Bay and Oyugis-
Ober in South Nyanza). This small selection surely does not cover the full range of soil types in 
the region. Closing this knowledge gap would require an extensive soil survey covering the full 
expanse of the study region, which was not possible in this study. Instead, globally available soil 
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data from the ISRIC WISE database was used for the modeling of crop production (Batjes and 
Bridges, 1995). This database provides soil information on a 0.5*0.5 degree grid. For each such 
grid cell, up to 10 soil types are given in the database, with the respective share of the cell that 
is covered by this type. For the three most important soil types per grid cell, the FAO soil 
classification code was extracted, and information about the soil extracted from ISRIC’s soil 
profile collection (Batjes, 2009). This database contains information from more than 10,000 soil 
profiles from around the world, with data on soil properties at different depth that is detailed 
enough for a process-based crop model that includes multiple soil layers. For all soil types in the 
database, and for all soil properties, the median values for the distributions were calculated. 
From the results, a typical profile for the respective soil type was constructed. The number of 
soil layers was determined as the number of layers present in more than two thirds of profiles 
from the database, for each soil type separately. 

2.5. Crop modeling 
Robust crop modeling requires detailed knowledge of a host of factors that influence cropping 
systems, such as the crop variety planted, sowing densities, fertilization regimes etc. In 
particular the crop variety needs to be defined not only by name, but with a comprehensive set 
of crop attributes describing crop phenology (timing of development stages in response to 
weather), photosynthetic rate etc. If all these factors are known, and reliable weather and soil 
information is available, crop yields can be simulated quite reliably, with several available 
models. 

In this study, most of the required information was not available, and the time frame of the study 
did not allow collecting sufficient data for the host of crops that were to be modeled. The crop 
modeling thus relied on a range of assumptions about pertinent factors. This will be sufficient for 
getting a general impression of climate change effects on major crops, but for yield projections 
to be accurate, field collection of relevant data and a repeat of the model runs are 
recommended. 

2.5.1. Annual crops 

For modeling the production of annual crops, the Agricultural Production Systems sIMulator 
(APSIM) was selected (Keating et al., 2003; McCown et al., 1996). This crop model is a robust, 
process-based model that provides sophisticated modules for a host of important field crops. 
Unlike more empirically based models, a process-based model can differentiate between 
different phases of crop development, which may be impacted by weather in different ways. It 
thus produces a good estimate of how and when crops are susceptible to adverse weather. 
While developed initially for modeling Australian crop production systems, APSIM has been 
applied successfully in many countries, across diverse climatic zones. An important feature of 
APSIM is that it has not only an easy-to-use user interface; it also provides the option of running 
models in ‘command line’ mode (directly from the operating system), which is necessary for 
implementing the batch processing needed for this study. 

For preparing APSIM simulations, the user interface was used to design appropriate crop 
management systems, and the instructions for running the simulation were then modified to 
accommodate different sets of weather records and soil types. For choosing the most 
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appropriate crop variety, the number of degree days available during each growing season was 
calculated according to equations used by APSIM. The number of degree days required by 
each crop variety given in APSIM’s database was also calculated. Based on these calculations, 
the most appropriate variety was selected as the one that best matched the available number of 
thermal units, while being slightly below the available amount for each rainy season. To ensure 
comparability of modeling results, the variety selected for the majority of sites was then chosen 
for all locations. 

APSIM was run for each combination of site, major local soil type, rainy season and climate 
scenario. Crop yields for all years of the 25-year simulations were extracted from APSIM’s 
output files, and plotted as cumulative distributions for each site, soil and climate scenario. 

2.5.2. Rainy seasons 

One important input parameter for a crop model is the time of planting the crop. This time 
invariably varies within the study region, depending on the exact onset date of the rainy season. 
While farmers’ intuition may tell them reliably when the rainy season begins and ends, 
automatic extraction of these dates from the weather records generated in this study required 
defining a formalized decision rule. This rule must be able to reproduce the dominant pattern of 
long and short rains for most of the study region. To achieve this, all rainfall records were first 
subjected to a 7-day running mean, i.e. the rainfall of each day was replaced by the average 
rainfall of the period starting 3 days before and ending 3 days after the respective date. All days 
for which this running mean was above 4 mm were classified as rain days. Since it does not rain 
every day even during the rainy season, a tolerance of up to 7 days of non-rain days was built 
into the rule, meaning that periods of up to 7 consecutive days that were not classified as rainy 
did not signify the end of the rainy season. Finally, a minimum duration of the rainy season of 30 
days was used as a threshold. Rainy spells that were shorter than 30 days were not considered 
to constitute a rainy season. 

Applying this rule to averaged annual rainfall records for all years of the baseline scenario 
produced the following rainy season pattern for the 36 sites chosen for more detailed crop 
modeling: For all sites, the algorithm found at least 1 rainy season, running from mid-March to 
the beginning of June. On average, this season lasted for 82 days, with a standard deviation of 
6 days. This rainy season is what is commonly referred to as the ‘long rains’. The second rainy 
season, the ‘short rains’, were detected for 27 out of 36 sites. This means that for 9 sites, this 
season was not recognized, including the north-eastern half of Homa Bay County.  Where it 
existed, this season lasted for about 45 days (±10 days), spanning October and November. For 
two sites in Northern Busia, a third rainy season was found, following two to three weeks after a 
rather short second rainy season. In effect, this additional season is probably part of the short 
rains, and represents insecure rainfall towards the end of this season. The third rains will thus 
not be discussed separately. 

All crop modeling was done separately for each rainy season, with the detected beginning of the 
season determining planting dates. The exact date was determined based on available soil 
moisture, but planting was only allowed during a time window starting 20 days before the 
average beginning of the rains, and 20 days after this date. For cotton, which is grown as a 
relay crop in the study region, the planting window was shifted backwards by 30 days. 
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2.5.3. Perennial crops 

With few exceptions, perennial crops cannot be modeled with APSIM, and for most crops, no 
process-based models exist. Modeling yields of perennial crops could thus only be achieved via 
empirical correlations of yields with certain environmental factors. However, since empirical 
models are not based on a thorough understanding of climate responses of all the processes 
that lead to crop yields, model validity under different climate regimes or in a different location 
would be questionable. The physiological processes of most annual crops are much better 
understood, allowing process-based modeling. As another important difference between annual 
and perennial crops, productivity of a tree crop is determined not only by environmental 
conditions and management decisions in the current year, but also by conditions and decisions 
in all years leading up to the current year. A range of factors, such as the pruning regime, 
alternate bearing or previous exposure to drought or heat stress can have strong effects on 
yield. But even the applicability of empirical models is quite limited by low availability of 
productivity data for perennial crops in locations comparable to the study districts. 

For perennial crops, as well as for sweet potato and cassava, for which no APSIM modules 
were available, climate change impact projection was thus based on climatic crop requirements 
published in FAO’s ECOROP database (http://ecocrop.fao.org/ecocrop/srv/en/home). 
ECOCROP consists of a collection of 2568 crops, for which minimum, maximum and optimum 
rainfall and temperatures are collated. For perennial crops included in the study, these 
requirements were extracted from the database. Projected climate conditions for all future 
scenarios and the baseline were then evaluated, with respect to their suitability for the given 
crops. 

In the evaluation, weights were assigned for monthly minimum and maximum temperatures, 
depending on how high monthly values were compared to the optimal range. The weighting 
scheme is illustrated in Figure 1. For either minimum or maximum temperature in the optimal 
temperature range, a weight of 1 was assigned for the respective month. For values outside the 
absolute temperature range, the month received a value of 0. For temperatures within the 
absolute temperature range but not within the optimal range, weights were scaled linearly. For 
example, where the absolute maximum temperature is 35°C and the upper end of the optimal 
range is 30°C, a monthly maximum temperature of 32.5°C would receive a weight of 0.5, 
whereas a minimum temperature of 28°C would receive a weight of 1. Weights were calculated 
in this manner for minimum and maximum temperature layers for all months of all climate 
scenarios, and the average per scenario calculated from all scores, for each grid cell of the 
climate layers that were within the study region. Wherever temperatures fell below the absolute 
minimum thresholds, or exceeded the absolute upper thresholds, weights for that location were 
set to 0, since ECOCROP indicates that the site is poorly suited for the crop. For rainfall, only 
annual totals are given in the database, which precluded taking full account of intra-annual 
variation. Annual rainfall sums were evaluated against crop requirements in the same way as 
temperatures (Figure 1). Suitability weights for temperature were then multiplied by weights for 
rainfall to arrive at a final suitability score for the crop for each map pixel and climate scenario. 
These were mapped to allow assessment of climate change impacts on crop suitability. 
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Figure 1. Illustration of the weight function applied to temperature variables in the suitability modeling algorithm. 
For temperatures in the optimal range for the crop, a weight of 1 was assigned. For temperatures outside the 
absolute range, 0 was given. For temperatures between the optimal and absolute thresholds, weights were scaled 
linearly. This scheme was applied to monthly means of daily minimum temperatures, monthly means of daily 
maximum temperatures and for annual rainfall totals. 

2.6. Effects of weather on crop yields 
Providers of weather insurance products must know the kind of climatic conditions that impact 
crop yields. From these conditions, weather indices can be defined. Evidently, these conditions 
will vary across crops, crop varieties, soil types and management practices. Insurance 
companies must ensure that the set of indices they use captures the site-specific crop 
vulnerability situation of their clients. Establishing the details of this vulnerability situation 
requires collection of a host of site-specific factors, including most importantly data about crop 
yields, as well as detailed descriptions of crop varieties. Since this information is not currently 
available, the analysis in the present study was restricted to screening of modeled crop yield 
patterns for phases and weather parameters that were strongly correlated with either high or low 
crop yields. This was done by Projection-to-Latent-Structures Regression (PLS), which has 
recently been shown to be an effective tool for analyzing the way, in which plant performance 
depends on climate (Luedeling and Gassner, under review; Yu et al., 2010). Unlike most 
regression approaches, PLS can handle daily weather records as independent input variables, 
making it suitable for the present study. 

Essentially, PLS produces two major outputs: the Variable Importance Plot (VIP) indicates how 
well certain variables are correlated with crop yields (Wold, 1995). VIP values are computed for 
each input variable (i.e. minimum and maximum temperatures and rainfall for each day of the 
growing season). Typically, a threshold value of 0.8 is adopted, with VIP scores above this 
threshold indicating that the variable is important. The second output is the model coefficient 
plot, which conveys the strength and the direction of the effect. All effects are measured relative 
to mean weather conditions at the site that the analysis is done for. 

The way PLS outputs must be interpreted is best illustrated using an example: For maize, the 1st 
of June may have VIP scores of 0.6 for minimum temperature, 1.0 for maximum temperature 
and 1.2 for rainfall. This means that variation in maximum temperature and rainfall on 1st June 
should be considered important for explaining crop yields. Model coefficients for the respective 
days are +0.5 for minimum temperature, -1 for maximum temperature and +0.3 for rainfall. This 
would mean that high maximum temperature on 1st June has a strongly negative effect on yield 
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(negative sign of the coefficient), whereas high rainfall on that day has a positive effect. The 
influence of high minimum temperature is also positive, but this effect is not considered 
important due to a low VIP score. Combinations of weather parameter and day that have high 
VIP scores and negative model coefficients are those that are of most concern to crop 
producers, because high values for the respective combination are associated with low yields. 

PLS analyses were run for all combinations of field crops that could be modeled with APSIM 
and for all major soil type in the study area. Dependent input variables were crop yields 
generated by APSIM, for all climate scenario years for the climate baseline and the 2020s 
scenarios. Later results were not included in the final analysis, because the 2050s and 2080s 
are beyond the planning horizon of most insurance companies. Moreover, due to a strong 
tendency towards lower yields in most climate change scenarios and for most crops, low yields 
were associated with higher temperatures during all days of the year. This was not considered 
realistic, and reflects Luedeling and Gassner’s (under review) assertion that all input data for a 
PLS analysis must be from approximately the same ‘climate domain’, for the PLS analysis to 
work. 

In the outputs of the PLS procedure, all VIP values above the threshold were marked in blue, for 
easier interpretation. A VIP threshold of 1.0 was adopted to highlight variables of particular 
importance. For the model coefficients, all those combinations of weather parameter and year, 
for which high values had a positive effect on yields were marked in green, whereas those with 
negative effects are drawn in red.  
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3. Results 
The various model runs done in this study produced a large number of maps, which cannot all be presented in a written report. 
Therefore, all maps are organized in a series of HTML pages, which is provided as a digital attachment to the report. These maps 
can be accessed by a standard web browser.  

3.1.  Soil types 
Among the map units of the ISRIC soils database that spanned the study region, a total of 7 soil types were among the three most 
prevalent soils of the cells. That is, these soils ranked either first, second or third in importance for any of the map units of the ISRIC 
database that covered the study region. Among these soils were Humic Andosols, Orthic and Plinthic Acrisols, as well as Orthic, 
Plinthic, Rhodic and Xantic Ferralsols. Andosols are of volcanic origin, with high plant nutrient contents, but potential limitations in 
water availability and a risk of aluminum toxicity. Acrisols are clay-rich soils of the humid tropics, with low soil fertility and high 
aluminum contents. Ferralsols are highly weathered soils of the humid tropics, with very low soil fertility. All results presented in this 
report are for these soils. Modeling yields for all soil types listed in the database was not possible, because model runs could not 
have been completed during the time available for the study with the available computing infrastructure. 

3.2. Climate change projections 

3.2.1. Temperature 

Among the three climate models used, all scenarios for both emissions scenarios showed a strongly increasing temperature trend 
(Figure 2). Mean annual temperatures in the study counties were around 22°C in the lower areas, and about 20°C in areas at higher 
elevations. For the B2a scenario, mean annual temperatures rose to 25°C in the lowlands and 23°C at higher elevations by the 
2080s. In the A2a emissions scenario, mean annual temperatures in the lowlands reached 27°C, and even the higher regions of 
Homa Bay had 25°C as annual mean temperature. Among the three climate models, temperature increases were strongest for the 
HadCM3 model (third row in Figure 2), while the CCCMA and CSIRO models had similar results. Monthly temperatures were in line 
with the annual temperature (not shown, but included in the digital supplement). 
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Mean annual temperature 

(°C)

 
Figure 2. Mean annual temperature (°C) for the study region projected for the current situation (baseline; first column), and 18 future scenarios. Rows across 
are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a greenhouse gas 
emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

The maps of changes relative to the baseline scenario illustrate projected temperature increases clearly (Figure 3). Projected 
increases were homogeneous across the study region, but differed across scenarios. Projected temperature rise by the 2020s was 
around 1°C in all GCMs and emissions scenarios. For the 2050s and 2080s, increases were strongest for the HadCM3 model, which 
predicted up to 5°C warmer conditions than presently. Projections were more moderate for the other two models, indicating 
temperature rise by 2-3°C for the B2a scenario by the 2080s, and about 4°C for the A2a scenario. 
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Changes in mean annual temperature 
(°C)

 
Figure 3. Changes in the mean annual temperature (°C) for the study region projected for the current situation, relative to baseline climate, for 18 future 
scenarios. Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

3.2.2. Rainfall 

Mean annual rainfall in the study region ranged from 1000 to 2000 mm in the baseline scenario (Figure 4). It is highest in the hilly 
areas north of Kisumu and east of Homa Bay. The least rainfall falls along the lake shore. This general pattern persisted in all future 
projections, but the three models differed significantly in projections of future rainfall. The HadCM3 and the CCCMA models showed 
rainfall patterns similar to the baseline for all future scenarios. Only the CSIRO model projected a marked increase in rainfall, 
reaching more than 2500 mm in the highlands. 



17 
 

Mean annual rainfall 
(mm)

 
Figure 4. Mean annual rainfall (mm) for the study region projected for the current situation (baseline; first column), and 18 future scenarios. Rows across are 
projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a greenhouse gas emissions 
scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

Maps of projected changes in rainfall (Figure 5) show these trends more clearly. No projection indicated annual rainfall decreases of 
more than 200 mm, while up to 800 mm more were projected for the 2080s for the CSIRO model and the A2a emissions scenario. 
Judging by annual rainfall alone, changes in the study counties should not pose big problems for agriculture. However, gains and 
losses in rainfall differed throughout the year, with less rainfall projected for some regions for May and June, and substantial gains for 
October through April.  
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Changes in mean annual rainfall 
(mm)

 
Figure 5. Changes in the mean annual rainfall (mm) for the study region projected for the current situation, relative to baseline climate, for 18 future scenarios. 
Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

3.2.3. Length of the rainy season 

Changes in seasonal rainfall had some effect on the duration of the rainy seasons, as defined by the decision criteria described in the 
Materials and Methods section. This information is derived from more detailed, daily weather records, so that not the entire area 
shown on the previous maps was covered. The following maps also only show data for locations, where the clear pattern of two rainy 
seasons still persisted in future scenarios. This was not the case everywhere in the study region. Especially for the CSIRO model, 
which projected strongly increasing rainfall, the long and short rains merged for some sites. These locations are not shown on the 
maps, because their inclusion would have shifted the legend scale so much that other differences could no longer have been 
distinguished. The start of the long rains, which currently happens around early to mid-March in the study region, was projected to 
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shift in many climate projections (Figure 6). Interestingly, significant differences were present between climate models, with the 
CCCMA model projecting a delay by about 10 days already by the 2020s for the B2a scenario. However, the A2a scenario, which is 
typically associated with greater changes, showed almost unchanged conditions at that time. This emissions scenario only showed 
such strong changes by the 2080s. The CSIRO model predicted an advanced beginning of the long rains by up to 20 days by the 
2080s. For earlier time slices, changes were smaller but pointed in the same direction. The HadCM3 model also showed a clear 
advance of the long rains. 

Beginning of the long rains (day of year) 

 
Figure 6. Mean beginning of the long rains (day of year) for the study region projected for the current situation (baseline; first column), and 18 future 
scenarios. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a greenhouse gas emissions scenario (low emissions; the 
last three columns are for the A2a (higher) scenario. 

Not all earlier starts of the long rains translated into longer rainy seasons. In spite of the earlier beginning, the HadCM3 actually 
projected a shortening of the long rains by up to 20 days (Figure 7). In contrast, CCCMA indicated a mostly unchanged length of the 
long rains, whereas the CSIRO model showed longer long rains. Among scenarios, changes in the length of the long rains were 
much less linear along the time progressions than other weather parameters. For the 2020s scenarios, all projections except the 
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CCCMA model run for the A2a scenario, presented a slight decrease in the length of the rains, which in most cases was 
compensated later. 

Length of the long rains (days) 

 
Figure 7. Length of the long rains (days) for the study region projected for the current situation (baseline; first column), and 18 future scenarios. The second to 
fourth column show projections for the 2020s, 2050s and 2080s for the B2a greenhouse gas emissions scenario (low emissions; the last three columns are for 
the A2a (higher) scenario. 

On average, the short rains started between the end of September and the end of October throughout the study region, with only the 
very north-eastern corner starting earlier, around mid-August (Figure 8). The CCCMA climate model showed a tendency towards 
slightly earlier short rain onsets until the 2020s, but then went back to close to the baseline situation. The area of earlier rain onset in 
the northeast experienced a month or more delay in the beginning of the short rains. The CSIRO model, which projected substantial 
rainfall increases, saw earlier onset of the short rains throughout the study region. For many stations, the short rains even merged 
with the long rains, so that the rainy season detection algorithm no longer recognized a separate short rainy season. The HadCM3 
model showed relatively stable rain onset dates for the short rains, with some advances only recognizable by the 2080s, for both 
emissions scenarios. 
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Beginning of the short rains (day of 
year)

 
Figure 8. Mean beginning of the short rains (day of year) for the study region projected for the current situation (baseline; first column), and 18 future 
scenarios. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a greenhouse gas emissions scenario (low emissions; the 
last three columns are for the A2a (higher) scenario. 

Changes in the length of the short rains were relatively small for most scenarios. Only the CSIRO GCM projected substantial 
changes, indicating a lengthening of the short rains. This went so far, that at many of the modeled sites, the short rains essentially 
merged with the long rains, forming one long rainy season, rather than two distinct ones (Figure 9). For these locations, no data are 
shown in the maps. While also relatively small, projected changes according to the HadCM3 model may be significant, because the 
rainy season is already quite short for many crops. Further shortening by up to 20 days, as projected by this GCM, may therefore be 
a concern. 
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Length of the short rains 
(days)

 
Figure 9. Length of the short rains (days) for the study region projected for the current situation (baseline; first column), and 18 future scenarios. The second to 
fourth column show projections for the 2020s, 2050s and 2080s for the B2a greenhouse gas emissions scenario (low emissions; the last three columns are for 
the A2a (higher) scenario. 

3.3. Projected performance of annual crops 
Yields of annual crops for 25 years were calculated for each crop, climate scenario, site and major soil type present in the vicinity of 
the site. For each combination of site, soil and crop, this resulted in 19 sets of 25 yield estimates. For taking full account of the effects 
of weather variability on crop production, the entire population of these 25 years’ yields must be evaluated, rather than simply 
calculating means. This is best accomplished by showing yield distribution functions. These plots show the likelihood of yields 
exceeding a certain level for each climate scenario, based on the empirical distribution of yields produced by the model. In these 
plots, yields for each climate scenario are shown as lines, with the black line showing the baseline scenario, and the colored lines the 
results of the climate projections. Figure 10 shows an example of such a cumulative yield frequency plot. The x-axis of the figure 
shows cotton yields at one of the modeling sites, as a percentage of the maximum yield that was modeled in the study region. The y-
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axis shows the probability of yield exceeding a certain level. The lines in the plot area indicate the distribution of yields for all 
modeled scenarios. The black line is the baseline scenario, while the colored lines are future projections. The following kinds of 
information can be extracted from the figure: 

1) The point where the right-most line meets the bottom of the figure is the best yield obtained in any model run, relative to the 
highest in the region. In this case, this site’s production potential is only about 80% of that at the region’s best site, meaning 
that other places in the study region have a higher yield potential. 

2) Some lines intersect with the left edge of the plot. This means that there is a risk of complete crop failure all climate 
scenarios. This risk is relatively low, with the highest risk among all scenarios at 4% (intersection with the left edge at 96%). 

3) Rather than going relatively straight down, most lines are rather diagonal. This indicates highly variable crop yields. 
4) Most, but not all colored lines are to the left of the black line. This means that for most climate scenarios, yield expectation 

decreases. However, for the lines to the right of the black line, climate change is projected to improve crop yields. 

 
Figure 10. Example of a crop performance plot. The x-axis shows projected yields relative to the maximum yield observed in the study region (given in the axis 
title), whereas the y-axis shows the probability of harvesting less than a given yield level. Separate lines for each climate scenario show yield profiles for each 
scenario, as a distribution over 25 modeled years. Results are presented for 3 Global Climate Models (distinguished by line styles), two greenhouse gas 
emissions scenarios (line thickness) and three future points in time (line color). A baseline scenario representing current conditions (drawn in black) is also 
presented. 
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Modeled yield of most crops differed considerably between soil types, and no reliable map of the distribution of soils in the region 
was available. Consequently, the point estimates of yield profiles could not be interpolated into maps. The following presentation of 
results will thus rely on selected cases that span the spectrum of results that were obtained. 

3.3.1. Maize 

Long rains 

During the long rains, modeled maize yields were quite stable, with surprisingly little variation. Figure 11 shows typical yield 
projection profiles. Most lines are almost vertical, indicating that yields during the long rains are quite stable. Projected yields for the 
climate change scenarios were mostly related to the time slice, showing a steady decline as time progressed. At this point, it should 
be noted that these profiles only reflect direct effects of weather on production. Other factors, such as pest and disease incidence are 
not captured in this analysis. 

 
Figure 11. Selected crop performance profiles for maize during the long rains, for all climate scenarios. 
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Short rains 

For the short rains, the situation was quite similar, once again with little yield variation among soil types and sites. Also for the short 
rains, climate change projections indicated a steady decline of yield levels, but with relatively stable yields for each climate scenario 
(Figure 12). 

  
Figure 12. Selected crop performance profiles for maize during the short rains, for all climate scenarios. 

The clustering of yield projection curves for each time slice indicated that climate change impacts on maize yields are quite 
predictable. In other words, the point in time had a stronger effect on yield levels than the climate model or the greenhouse gas 
emissions scenario. This indicates that future yield levels can be anticipated with relative certainty. The likely trajectory is a gradual 
decline in yield levels. 

3.3.2. Cotton 

Long rains 

Modeled cotton yields depended primarily on the soil type. Among the soils modeled in this study, most were virtually unsuitable for 
cotton (Figure 13, left). Only on Humic Andosols, cotton production was possible (Fig. 13, right), and even there yields were highly 
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variable, as indicated by the diagonal orientation of most lines in the figure. In the example shown here, which was typical of the yield 
patterns obtained for all sites that had this soil type, yield varied between 15% and 85% of the maximum yield in the region, even for 
the baseline scenario, and obtaining yields close to the mean of this distribution was no more likely than any other yield. This 
signifies that even under current climate, cotton yields are highly variable. Two climate scenarios for the 2020s actually improved 
yield expectations, but for all other scenarios projected yields were substantially lower than baseline yields. Even for some 2020s 
projections, very low yields were obtained. 

  
Figure 13. Selected crop performance profiles for cotton during the long rains, for all climate scenarios. 

Short rains 

For the short rains, modeled yields for all soil types except Humic Andosols were also negligible. Among the Humic Andosols (two 
examples shown in Figure 14), projected yield patterns were similar to those for the same soil during the long rains. In contrast to 
those, however, some projections for the 2050s and 2080s indicated higher yields than the baseline. 
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Figure 14. Selected crop performance profiles for cotton during the short rains, for all climate scenarios. 
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3.3.3. Sorghum 

Long rains 

Similar to maize, sorghum yields during the long rains showed little variation for most sites (Figure 15). For most sites, climate 
change effects in all scenarios were relatively small, but with a slight tendency towards decreasing yields. Only for a few sites, 
impacts were stronger, accompanied by an increase in yield variability, as illustrated in the right plot. These effects, however, only 
manifested themselves in the 2050s and 2080s scenarios.  

  
Figure 15. Selected crop performance profiles for sorghum during the long rains, for all climate scenarios. 

Short rains 

During the short rains, sorghum yields were more variable, and climate change impacts differed markedly. The four plots in Figure 16 
illustrate this variability. For sorghum, the soil type had a major influence on yields. On Humic Andosols, yields were very stable, 
while on all other soils, yield variation was greater. Again, most climate changes scenarios indicated a decrease in yields, but a few 
exceptions existed (top left figure). By the 2050s and 2080s, several of the climate scenarios showed a clear decline in yield levels. 
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Figure 16. Selected crop performance profiles for sorghum during the short rains, for all climate scenarios. 
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3.3.4. Greengram 

Long rains 

Greengram yields in the long rains were relatively stable for the baseline scenario, for all sites and all soils. However, all climate 
change scenarios projected a strong decline in yields (Figure 17). Already by the 2020s, the amount of greengrams that could be 
harvested declined by more than 10% in most future scenarios. These losses became increasingly severe for the later time slices. As 
for maize and sorghum, the time slice was the most important determinant of yield, whereas climate model and greenhouse gas 
emissions scenario were of lesser importance. 

  
Figure 17. Selected crop performance profiles for greengram during the long rains, for all climate scenarios. 
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Short rains 

For many sites, yield patterns of greengram during the short rains were similar to those for the long rains (Figure 18 right). For some 
locations, however, variability was quite high in the baseline scenario, and some climate scenarios showed a slightly decreasing risk 
of obtaining very low yields (Figure 18 left). 

  
Figure 18. Selected crop performance profiles for greengram during the short rains, for all climate scenarios. 
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3.3.5. Soybean 

Long rains 

During the long rains, most sites, for which yields were modeled, had very low yields, compared to a few sites in lower Busia (Figure 
19 left). For these sites, high baseline yield potential was identified, but climate change effects promised to be quite severe. For all 
other locations, yield potential was very low, in most cases below 1000 kg per ha (Figure 19 right). 

 

 
Figure 19. Selected crop performance profiles for soybean during the long rains, for all climate scenarios. 
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Short rains 

For the short rains, yield potential of soybeans was low for all modeled sites, and climate change impacts were severe (Figure 20). 
The highest modeled yield for the short rains was only about one third of the maximum yield of the long rains. Many climate change 
scenarios reduced these yields to half of this amount or less.  

  
Figure 20. Selected crop performance profiles for soybean during the short rains, for all climate scenarios. 
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3.3.6. Groundnut 

Long rains 

Groundnut yields during the long rains were quite high for all of the study region, but at risk from climate change impacts (Figure 21). 
In all climate change scenarios, yields were quite a bit lower than at present, and yield losses increased as time went on. 

  
Figure 21. Selected crop performance profiles for groundnut during the long rains, for all climate scenarios. 
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Short rains 

For some locations, the yield patterns during the short rains were quite similar to those of the long rains, though at a slightly lower 
level (Figure 22 left). However, a few stations showed a pattern as shown in Figure 22 right, in which climate change lowered 
attainable yield, but for some climate scenarios reduced the risk of obtaining very low yields. For some of these sites, all future 
scenarios had more consistent (though lower) yields than the baseline. 

  
Figure 22. Selected crop performance profiles for groundnut during the short rains, for all climate scenarios. 
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3.3.7. Cowpea 

Long rains 

Cowpea yields during the long rains were fairly stable within climate scenarios. Once again, the main factor that determined yield 
levels for future scenarios was the time slice, with a steady decline in productivity projected as time went on. While yield levels varied 
among sites and soils, the general pattern shown in the two presented examples (Figure 23) was evident for all simulations.  

  
Figure 23. Selected crop performance profiles for cowpea during the long rains, for all climate scenarios. 

Short rains 

During the short rains, two types of yield patterns were observed. For many sites and soils, simulated yields and changes projected 
for climate change scenarios resembled those for the long rains (Figure 24 left). However, some locations exhibited a different 
behavior, which featured higher yield variability for the baseline scenario (Figure 24 right). At these sites, climate change reduced 
yield levels, but also reduced variability (more vertical lines in the figure). Yields thus became lower but more predictable. This is 
probably due to the brevity of the short rains, which appear barely long enough to reliably produce a cowpea crop. For some future 
scenarios, the rainy season increased in length, but the effect shown here may also be related to faster accumulation of thermal time 
due to higher temperatures. The optimum temperature for cowpea development (not for yield) in APSIM's cowpea module is quite 
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high at 35°C and growth only ceases at 44°C, so that temperature increases within the range projected for the future should 
accelerate growth. This makes the crop harvestable at an earlier date, making it less vulnerable to short growing seasons. 

  
Figure 24. Selected crop performance profiles for cowpea during the short rains, for all climate scenarios. 
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3.3.8. Fababean 

Long rains 

During the long rains, modeled yields of fababean were quite high and reliable in the baseline scenario at most locations (Figure 25 
left). In all climate change scenarios, a clear decline in yields was visible, with again the time being the major determinant of yield 
levels. A second type of yield pattern was also observed in the study region. Here, yields were also quite stable, but with a 10-20% 
probability of getting much lower yields. This risk was preserved in some, but not all, of the climate scenarios (Figure 25 right) 

  
Figure 25. Selected crop performance profiles for fababean during the long rains, for all climate scenarios. 

Short rains 

The duration of the short rains was not enough to ensure reliable fababean yields in most places. While the maximum yield observed 
in the study region was similar to the long rains, yield variability was much higher, ranging in the example from 25 to 85% of the 
maximum (Figure 26 left). This was mainly related to the length of the growing season, and since changes to this parameter differed 
among climate scenarios, responses to climate change were less clear-cut than for the long rains. Some scenarios indicated yield 
increases and lower risks, while others showed lower yields and similarly high variability as in the baseline scenario. Only in the more 
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humid highland areas were yields more predictable, but even here a certain probability of low yields persisted. In these areas, effects 
of climate change were predominantly negative (Figure 26 right).  

  
Figure 26. Selected crop performance profiles for fababean during the short rains, for all climate scenarios. 

3.4. Projected performance of perennial crops (and crops not included in APSIM) 

3.4.1. Mango 

Most of the study region was highly suitable for mango production. While the maximum suitability score of 1.0 was not reached 
anywhere for any climate scenario (Figure 27), much of Busia and Homa Bay had scores above 0.6 for all scenarios. Most future 
projections saw slightly increasing suitability, because some months of the baseline scenario were slightly cooler than would be ideal 
for mango production. Only the CSIRO model, which projected strong increases in rainfall, showed declining suitability in the future. 
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Suitability for 
mango

 
Figure 27. Suitability of the study region for production of mango, according to crop requirements from FAO's ECOCROP database. A score of 1.0 indicates 
optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future scenarios. 
Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 
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3.4.2. Sugarcane 

Suitability for 
sugarcane

 
Figure 28. Suitability of the study region for production of unirrigated sugarcane, according to crop requirements from FAO's ECOCROP database. A score of 1.0 
indicates optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future 
scenarios. Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

Suitability for sugarcane for the baseline scenario was quite high for Busia, but low for most of Homa Bay (Figure 28). This was 
predominantly because rainfall requirements of sugarcane could not be met. For all future scenarios, the region became more 
suitable for this crop. For some of the 2080s projections, almost the whole region was very well suited for sugarcane. It should be 
noted that these projections are only valid for sugarcane that is not irrigated and has no access to shallow groundwater. Especially 
the latter, however, is certainly the case in some of the lakeshore areas, probably enhancing suitability substantially. 
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3.4.3. Pineapple 

Suitability for 
pineapple

 
Figure 29. Suitability of the study region for production of pineapple, according to crop requirements from FAO's ECOCROP database. A score of 1.0 indicates 
optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future scenarios. 
Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

Essentially the whole study region was classified as suitable for pineapple production (Figure 29). Only in a small area in the 
northeast, minimum temperatures constrained pineapple production for scenarios up to the 2020s. For all later times, this constraint 
was lifted. In general, all future climate trajectories indicated further increases in suitability for pineapple. 
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3.4.4. Banana 

Suitability for banana 

 
Figure 30. Suitability of the study region for production of banana, according to crop requirements from FAO's ECOCROP database. A score of 1.0 indicates 
optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future scenarios. 
Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

With the exception of highland areas, the whole study region was suitable for banana. For all future scenarios, suitability increased, 
until by the 2080s, conditions were almost ideal in much of the study region (Figure 30). 
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3.4.5. Cassava 

Suitability for 
cassava

 
Figure 31. Suitability of the study region for production of cassava, according to crop requirements from FAO's ECOCROP database. A score of 1.0 indicates 
optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future scenarios. 
Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

Also for cassava, conditions were quite favorable for the baseline scenario, but became very suitable almost everywhere in the 
region by the 2050s (Figure 31). The few areas that are currently unsuitable for production became suitable in the course of the 
model runs. 
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3.4.6. Sweet potato 

Suitability for sweet potato 

 
Figure 32. Suitability of the study region for production of sweet potato, according to crop requirements from FAO's ECOCROP database. A score of 1.0 
indicates optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future 
scenarios. Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

Because the climatic requirements of sweet potato are somewhat similar to those of cassava, projections for sweet potato (Figure 
32) are not very different from those for cassava. Because of slight differences in optimal and tolerable high temperatures, suitability 
was slightly higher for sweet potato than for cassava. 
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3.4.7. Common bean 

Suitability for common bean 

 
Figure 33. Suitability of the study region for production of common bean, according to crop requirements from FAO's ECOCROP database. A score of 1.0 
indicates optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future 
scenarios. Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

In the baseline scenario, conditions were very favorable for common beans, and such good conditions were projected to continue for all 2020s scenarios 
(Figure 33). However, from the 2050s scenarios onward, suitability gradually declined. By the 2080s, peak temperatures in much of the study region could be 
above the absolute temperature range of common beans. This probably signifies severe yield reductions.  
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3.4.8. Finger millet 

Suitability for finger 
millet

 
Figure 34. Suitability of the study region for production of finger millet, according to crop requirements from FAO's ECOCROP database. A score of 1.0 indicates 
optimal conditions, whereas 0.0 means unsuitable for the crop.  Suitability is shown for the current situation (baseline; first column), and 18 future scenarios. 
Rows across are projections with the same climate model. The second to fourth column show projections for the 2020s, 2050s and 2080s for the B2a 
greenhouse gas emissions scenario (low emissions), whereas the last three columns are for the A2a (higher) scenario. 

According to the ECOCROP database, favorable conditions for finger millet can currently only be found along the lakeshore (Figure 
34). This was projected to persist throughout the 2020s and 2050s scenarios. By the 2080s, however, conditions were much less 
favorable, probably due to higher temperatures. 



 
 

3.5. Effects of weather on crop yields 
The second set of outputs for each crop comes from the analysis of weather effects on crop 
yields, accomplished by PLS regression. This procedure generated three plots each for 
minimum temperature, maximum temperature and rainfall. The example below, for the 
response of a crop to minimum temperatures, shows how these results can be interpreted 
(Figure 35).  

 
Figure 35. Example of PLS analysis output. The Variable-Importance-Plot (left) shows the importance of a 
variable for explaining variation in crop yields. Blue bars indicate days, for which the VIP score for the 
respective climate parameter exceeded the threshold value of 1, indicating importance for the explanatory 
model. The model coefficient plot (middle) shows the direction, in which high values for the respective climate 
parameters and day influence yields. Positive values (green, when also important) indicate that high Tmin 
causes high yields; negative values (red, when also important) mean the opposite. The plot of the right shows 
the information from the middle plot in the context of modeled values for the climate parameter. The black 
line in this plot is the mean for the respective date, the grey bars are the standard deviation. 

The x-axis for each plot shows the time between about 20 days before the beginning of the 
planting window and the date, when 90% of the cotton crops of all model runs had been 
harvested. The first plot shows the variable importance statistic, which evaluates whether or 
not minimum temperature during certain days has an important effect on crop yields. This is 
the case for all days, for which the bars are blue, i.e. for short phases in March, April and 
June, and for a long period between December and February. The middle plot, showing the 
coefficients of the PLS model, shows the direction, in which high minimum temperature 
during these phases pushes yields. Red bars indicate that high minimum temperatures lead 
to lower yields, green bars signify a yield increase. The plot shows that during a short phase 
in April, high minimum temperatures have a significant positive effect on yields. During short 
phases in March and June, the opposite effect occurs. The main effect, however, is the 
negative effect of high minimum temperatures on yield, for the end of the growing season. 
The third plot shows the same results in the context of modeled temperatures. The black line 
in this figure shows the mean minimum temperature of the respective dates among all 
scenarios for the 2020s and the baseline. The gray, red or green bars are the standard 
deviation of Tmin for these dates. The coloring is the same as in the middle plot. In this case, 
the figure shows that minimum temperatures in December, January and February are 
relatively low, compared to earlier in the season. However, the modeled crop still reacted 
strongly to Tmin, with warmer conditions having a fairly strong negative effect on yields. 
Overall these results show that the modeled crop is relatively insensitive to minimum 
temperatures within the range observed in the modeled scenarios, during most of the 
growing season. Only during the last few months before harvest is there a strong effect of 
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this climate parameter, with conditions at the cooler end of what can be expected being 
optimal for yields. 

3.5.1. Maize 

Long rains 

Maize is normally planted at the beginning of the rainy season and matures after the rains 
have stopped. Its productivity is thus not very susceptible to the length of the rainy season, 
unless rains are very short. This is reflected in the crop weather profile (Figure 36), which 
shows very few days, during which rainfall had a significant effect on crop yields. Both 
minimum and maximum temperature, in contrast, had strong effects, with warm conditions 
during most developmental stages impacting yields negatively, while heat never benefitted 
the crop. The pattern shown in Fig. 34 for Orthic Ferralsols was also apparent for all other 
soils. 

 
Figure 36. Results of the PLS analysis for maize during the long rains on all Orthic Ferralsols. For a more 
detailed explanation, see text. 

Short rains 

For the short rains, maize also responded strongly negatively to high temperatures (Figure 
37). For this rainy season, however, the shorter duration of humid conditions was reflected in 
greater yield response to variation in rainfall. For example, maize grown on a Xantic 
Ferralsol responded favorable to extraordinarily moist conditions until mid October. After this 
time, effects of high rainfall were mixed, with both negative and positive impacts detected. 
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Other soils, most notably Plinthic Ferralsols, did not show a positive response of maize 
yields to high rainfall. 

 
Figure 37. Results of the PLS analysis for maize during the short rains on all Xantic Ferralsol. For a more 
detailed explanation, see text. 

3.5.2. Cotton 

Among the soils, for which cotton production was modeled, only Humic Andosols deserve a 
closer look. On all other soils, yields were negligible, and while for some sites, influential 
factors can be identified, overcoming the associated constraints would probably still not 
make production worthwhile. 
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Long rains 

 
Figure 38. Results of the PLS analysis for cotton during the long rains on all Humic Andosols. For a more 
detailed explanation, see text. 

On Humic Andosols, the growing period of cotton ranged from March through September to 
October, for most sites (Figure 38). However, in some cases, cotton was only harvested in 
January. Unlike maize, cotton production was strongly impacted by rains, with high rainfall in 
the second half of the long rains and first half of the short rains impacting yields positively. 
Between the rainy seasons, the impact was lower in spite of relatively low rainfall, reflecting 
a low water requirement of cotton during the corresponding development phases. The 
second phase of high rainfall influence is after most of the cotton has already been 
harvested. Effects of temperature were only manifest for maximum temperatures. High 
maximum temperatures after the long rains and during the short rains led to low yields. 
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Short rains 

 
Figure 39. Results of the PLS analysis for cotton during the short rains on all Humic Andosols. For a more 
detailed explanation, see text. 

Also for cotton planted during the short rains, rainfall was the dominant factor impacting 
yields (Figure 39). The emerging pattern was somewhat less clear than for the long rains, 
but in general, high rainfall during the drier seasons had a positive effect on yields, whereas 
relatively low rainfall was beneficial during the wettest phases of the rainy seasons. Harvest 
dates for cotton ranged between May and August for the baseline scenario, with most of the 
yields coming in between June and August, after the end of the long rains. For many future 
climate scenarios, harvest dates advanced, so that cotton harvest occurred between March 
and May. While the crop model did not simulate cotton quality, this advance in harvest dates 
may be a concern, because rainfall just before and during harvest diminishes cotton quality. 
With most of the simulated cotton growing season ending during the long rains, the value of 
the harvested product may thus decline. 
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3.5.3. Sorghum 

Long rains 

 
Figure 40. Results of the PLS analysis for sorghum during the long rains on all Plinthic Acrisols. For a more 
detailed explanation, see text. 

Weather variables with significant impacts on sorghum yields during the long rains were 
identified among all three main climate parameters (Tmin, Tmax and Rainfall; Figure 40). 
Significant effects of high temperatures were always negative. This was particularly the case 
at the beginning of the long rains. Yields were much more susceptible to high minimum than 
to high maximum temperatures. Effects of rainfall were mixed, with high rainfall having a 
positive effect on yields during some phases, and a negative effect during others. This may 
reflect sorghum's sensitivity to soil water levels. Water supply must be sufficient, but the crop 
is also sensitive to waterlogging, which may happen if too much precipitation occurs. 
Observed crop response patterns to weather were similar for all soil types. 
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Short rains 

 
Figure 41. Results of the PLS analysis for sorghum during the short rains on all Plinthic Ferralsols. For a more 
detailed explanation, see text. 

During the short rains, crop responses to weather were a bit more complicated than for the 
long rains (Figure 41). Effects of high temperature were still predominantly negative, but 
some phases that showed a positive effect of heat on crop yields were also seen, for some 
soil types. Effects of high precipitation were mixed again, with negative and positive impacts 
on yield found in the model output. 
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3.5.4. Greengram 

Long rains 

 
Figure 42. Results of the PLS analysis for greengram during the long rains on all Humic Andosols. For a more 
detailed explanation, see text. 

Greengram yields responded primarily to temperature, with high values for Tmin and Tmax 
impacting yields negatively (Figure 42). In particular, high minimum temperatures had a 
strongly negative effect almost during the entire growing period. Rainfall effects were less 
pronounced, except for high moisture near the end of the growing season. This indicates 
that greengram benefits from a slightly longer rainy period than is normal in the study region. 
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Short rains 

 
Figure 43. Results of the PLS analysis for greengram during the short rains on all Humic Andosols. For a more 
detailed explanation, see text. 

Also for the short rainy season, weather effects on greengram yield were dominated by 
adverse heat effects (Figure 43). High precipitation had a positive impact during certain parts 
of the growing season. The response of greengram to weather varied among soil types (see 
digital attachment). 

3.5.5. Soybean 

Long rains 

Soybean responded to weather in a rather inconclusive way. For example, high minimum 
temperatures had a strongly negative effect for some soils, but a strongly positive effect for 
other soils. A representative PLS profile could therefore not be identified. The reason for this 
pattern is probably that soybean yields were only high in the highlands, yet soils there were 
similar as in the lowlands (according to the global database used). In the PLS analysis, all 
sites for a given soil type were analyzed together. For soybean, however, differences 
between the sites may have been greater than acceptable for the analysis method. 
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Short rains 

 
Figure 44. Results of the PLS analysis for soybean during the short rains on all Humic Andosols. For a more 
detailed explanation, see text. 

In contrast to the long rains, clear weather response patterns emerged for the short rains 
(Figure 44). This is probably because for many of the high potential sites, no short rainy 
season was identified, because the short rains were projected to merge with the long rains. 
As for most of the other crops, high temperatures had a strong negative effect on yield 
levels. High rains during early phases of the growing season had a positive influence. 
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3.5.6. Groundnut 

Long rains 

 
Figure 45. Results of the PLS analysis for groundnut during the long rains on all Rhodic Ferralsols. For a more 
detailed explanation, see text. 

Weather effects on groundnut yields were dominated by an adverse effect of high 
temperatures (Figure 45). This was similar for minimum and maximum temperatures. In 
comparison, rainfall effects were relatively small and limited to fairly short time spans at the 
beginning and end of the rainy season. 
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Short rains 

 
Figure 46. Results of the PLS analysis for groundnut during the short rains on all Rhodic Ferralsols. For a more 
detailed explanation, see text. 

For the short rains, high temperature was also the dominant factor influencing groundnut 
yields (Figure 46). Rainfall also had an effect, with abundant rains at the beginning and end 
of the rainy season promoting high yields. This indicates that a rainy season slightly longer 
than the current short rains would benefit groundnuts. 



 

60 
 

3.5.7. Cowpea 

Long rains 

 
Figure 47. Results of the PLS analysis for cowpea during the long rains on all Orthic Acrisols. For a more 
detailed explanation, see text. 

During the long rains, cowpea responded mainly to high minimum temperature throughout 
the growing season (Figure 47). High maximum temperatures at the beginning and end of 
the season also had an effect. For both parameters, impacts were always negative, 
indicating that cowpea yields were heat-sensitive. Rainfall during the long rains only had a 
minor effect on cowpea yields. 
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Short rains 

 
Figure 48. Results of the PLS analysis for cowpea during the short rains on all Rhodic Ferralsols. For a more 
detailed explanation, see text. 

Also during the short rainy season, the main factors influencing cowpea yields was 
temperature, with high Tmin and Tmax having negative effects, throughout much of the 
season (Figure 48). Rainfall was of comparatively minor importance, but high rains during 
certain phases had significant positive impact. 
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3.5.8. Fababean 

Long rains 

 
Figure 49. Results of the PLS analysis for fababean during the long rains on all Humic Andosols. For a more 
detailed explanation, see text. 

As most other crops, fababean responded predominantly to high temperatures, with lower 
yields (Figure 49). High precipitation had a slight effect, where it extended the rainy season. 
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Short rains 

 
Figure 50. Results of the PLS analysis for fababean during the short rains on all Plinthic Acrisols. For a more 
detailed explanation, see text. 

For the short rainy season, the negative effects of high temperatures were less pronounced, 
but still present (Figure 50). Rainfall had a higher impact, with high rainfall during much of 
the growing season having a positive effect. This indicates that in much of the study region, 
the short rains are shorter than would be ideal for fababean production. 
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4. Synthesis 

4.1. Present and future performance of major crops 

4.1.1. Maize 

Maize is currently the most important crop in the region, and this analysis confirmed its 
suitability for the climate of the study region. Current yields were stable and relatively high, 
and the crop could be reliably produced during both the long and the short rains at every site 
that was analyzed. Compared to other crops, soil type was of little influence. It appeared that 
water demand was well attuned to rainfall patterns, with relatively low water needs after the 
end of the rains, during maturation of the crop. 

Future projections indicated declining yields for every site, soil and climate scenario. 
However, these losses were relatively modest and predictable, and yield levels continued to 
be stable (though lower) for all future scenarios. The main factor that drove yield variation 
was temperature, with high minimum and maximum temperatures having a negative impact 
on maize yields. During the short rains, some sites and soils benefited from rainfall around 
the beginning and end of the season. 

Based on these results, adaptation of maize production to climate change impacts should 
focus on introducing or developing varieties that can tolerate heat. Farmers could also 
benefit from introducing measures to influence farm microclimate, e.g. by planting shade 
trees or introducing other kinds of agroforestry practices. 

4.1.2. Cotton 

Given local climatic conditions, it was possible to achieve high cotton yields without 
irrigation, but only rarely and only on certain soils. Among the soils investigated in detail in 
this study, only Humic Andosols had high potential, whereas for all other soil types, yields 
were very low. Exploratory further model runs on additional soil types implied that Eutric 
Histosols and to a lesser extent Chromic Vertisols should be added to this list. For these 
soils, yield patterns resembled those for Humic Andosols, except that yields on Chromic 
Vertisols were only about two thirds of those on the other two soils. On all soils that are not 
in this select group of three, cotton production cannot be recommended. 

For the suitable soils, yields were very variable for the baseline scenario and also for all 
future scenarios. Mean yields were only about half of the maximum yields, and many 
scenarios showed a certain risk of complete crop failure. Whether cotton production makes 
sense in such a risky production environment must be evaluated in light of the economics of 
cotton production and marketing, which were not explored in this study. In any case, the high 
yield fluctuations would likely be a major constraint on the establishment of a viable cotton 
industry. 

Future scenarios mostly saw a decline in yields, even though in some cases, increases were 
also projected. In general, future climate scenarios indicated either yield losses or increasing 
yield variability. High temperatures during certain phases of the growing season had a 
negative effect on cotton yields, but the dominant factor was rainfall. The growing period of 
cotton spans both rainy seasons, meaning that much of the active growth occurs between 
these seasons. Any additional rainfall during this period is thus of great benefit for the crop. 
As a result, cotton production would benefit from the option to irrigate during the dry season. 
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Since this is necessary for ensuring stable production levels even under current conditions, 
this is not only an adaptation strategy for future climates, but also a prerequisite of a viable 
cotton industry, which currently does not exist in the area. 

Quality attributes of cotton were not evaluated in this study, but some concerns resulted from 
the analysis. Cotton quality depends to a large extent on weather before and during harvest. 
Rainfall around that time has a detrimental effect. Dry seasons in Kenya's southwest are not 
as dry as those in other major cotton-producing regions, and some rain can fall at any time 
of year. Whether cotton from the study region can compete for quality with other supply 
regions should be explored separately, before investments in cotton production are 
intensified. Some climate change scenarios also indicated that cotton could complete its life 
cycle earlier, due to faster accumulation of thermal time. This shifted harvest dates earlier, 
so that in many cases, harvest occurred in the middle of the next rainy season. This could 
have a strong negative effect on cotton quality. For cotton, more than for most other crops, 
yield levels are not the only, and possibly not even the most important, aspect of production, 
and care should be taken when recommending this crop to farmers. 

4.1.3. Sorghum 

Like maize, sorghum yields were also very stable throughout the growing region, and the 
crop grew almost equally well on all soil types. While most sites displayed this behavior in 
both the long and the short rainy season, some sites had more variable yields during the 
short rains. For future climate scenarios, most site/soil combinations showed a decline in 
yields, which however, was much less pronounced than for maize. On soils that had fairly 
variable yields in the baseline scenario, some future climate scenarios even saw an increase 
in yields, and sometimes a decrease in yield variability. This pattern indicates that sorghum 
is sensitive to the length of the short rainy season. The PLS analysis confirmed this 
impression, showing a strong positive effect of high rainfall at the beginning and end of the 
short rains for many sites. In addition to this moisture effect, high temperatures negatively 
impacted sorghum yields. The high yield levels, small variation and low susceptibility to 
climate change make sorghum appear like a recommendable crop, for the present situation 
as well as for climate change adaptation. The crop model results indicate that particularly 
during the long rains, sorghum production represents a good option for farmers. 

4.1.4. Greengram 

For greengram, yield differences among sites were relatively small. Only a few locations 
showed notable yield variability for the baseline scenario, and only during the short rains. All 
future scenarios indicated a yield decline. The main driver of this decline was high 
temperature. In addition to this strongly negative effect, a positive effect of abundant rainfall 
at the beginning and end of the short rains was beneficial. This indicates that greengram is 
better suited for the long rains, while the short rains may at times not be long enough for 
optimal greengram yields. 

4.1.5. Soybean 

For soybean, yield varied substantially between sites. Only a few locations came close to the 
regional yield maximum. For most sites and most soils, yields were insignificant during the 
long rains and would probably not allow profitable production of this crop. For the short rains, 
maximum yield across all sites was only about a third of that for the long rains, implying that 
the short rains are not long enough for soybean production. In spite of the low production 
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level, yields during the long rains were stable, whereas for the short rains, some sites 
displayed substantial variability. All climate change scenarios indicated a yield decline. The 
response of soybean yields to weather variables was mixed, but a general negative impact 
of high temperatures was detected. As many other crops, soybean would benefit from an 
extension of the growing season, as implied by positive PLS model coefficients for rains near 
the margins of the short rains. 

4.1.6. Groundnut 

For groundnuts, yield differences across sites were relatively small, and most sites had quite 
high yields. This was particularly true for the long rains. During the short rains, yields were 
more variable and generally lower. All future scenarios indicated decreasing yields, with 
quite substantial losses for all time slices. Again, the main driver of this yield decline was 
high temperature, whereas high rainfall at the beginning and end of the short rains was 
beneficial. 

4.1.7. Cowpea 

For cowpea, differences between sites were small. During the long rains, most sites had 
stable and moderately high yields. Short rain yields were much more variable, but maximum 
yields during this season were only slightly lower than during the long rains. In all climate 
change scenarios, yield losses were substantial, with 2050s yields only about half of those 
for the baseline scenario. Again, it was mainly high temperature that reduced yields, while 
more rains had a positive effect on yield during the short rainy season. 

4.1.8. Fababean 

Fababean yields during the long rains were high, and did not vary much between sites and 
soils, except for a few locations, which had more variable and lower yields than the majority 
of sites. For most sites, yields were quite stable. During the short rains, yields were much 
more variable, but still relatively high. Climate change scenarios projected a steady decline 
in yields over time. For a small number of sites, however, yields during the short rains 
increased slightly and became less variable for some climate scenarios. Even for those 
sites, most climate scenarios saw a decrease in yields. Higher temperatures were mainly 
responsible for the yield decline, while a longer than usual duration of the short rains was 
beneficial. 

4.2. Present and future performance of perennial and non-APSIM crops 

4.2.1. Mango 

Both counties were classified as suitable for mango production. While yield levels could not 
be projected with the method used, this should indicate good potential to produce mangoes 
in the study region. Suitability was not compromised by climate change, with increases in 
suitability for much of the study region. 

4.2.2. Sugarcane 

When grown under rainfed conditions without irrigation or access to groundwater, much of 
the study region was unsuitable for sugarcane. Only the higher reaches of Busia received 
adequate amounts of rainfall for classifying this region as suitable for the crop. Since the 
main constraint to production appeared to be rainfall in most of the study region, additional 
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irrigation could make sugarcane production possible in most of Busia and Homa Bay 
counties. Likewise, access to groundwater would facilitate sugarcane production. This is 
already widely practiced, with sugarcane predominantly grown in low-lying areas, where it 
does not depend on rainfall alone for meeting its water needs. 

4.2.3. Pineapple 

The whole study region was highly suitable for pineapple production. In future scenarios, 
conditions improved further. 

4.2.4. Banana 

With the exception of highland areas, most of the study area was suitable for banana 
production. Again, climate change seems poised to further improve suitability for this crop. 

4.2.5. Cassava 

The whole region was classified as suitable for cassava production and projected to remain 
suitable. There was a slight drop in suitability in some 2080s scenarios, but not to an extent 
that would warrant concerns. 

4.2.6. Sweet potato 

Like cassava, sweet potato could be grown throughout the study region. Most of the area 
was highly suitable for all climate scenarios. By the 2080s, suitability dropped slightly, but 
remained at high levels. 

4.2.7. Common bean 

Common beans, a major component of typical farming systems in the region, encountered 
high suitability in the study region, in the baseline scenario. For future scenarios, however, 
suitability declined slightly, and by the late 21st century, some parts of the study region had 
become unsuitable because of high temperature. 

4.2.8. Finger millet 

The lowland areas near the lake were highly suitable for finger millet in the baseline 
scenario. High suitability persisted there throughout the 2020s and 2050s. By the 2080s, 
suitability declined considerably due to high temperatures. 
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5. Adaptation recommendations 
Among the crops that were modeled, the cereals maize and sorghum performed strongly in 
the baseline scenario, and losses in climate change projections were moderate. This was 
particularly true for sorghum. Among the pulses, groundnut and fababean had high yields 
and were moderately resistant to climate change. Greengrams and cowpeas also produced 
well, but were very susceptible to climate change. The production potential for soybeans was 
low, and this crop may not be well adapted to the study region. Many crops, in particular the 
pulses, benefited from irrigation during the short rains. This rainy season is short, as the 
name suggests, and if it is further shortened during particularly dry years, it may not be long 
enough for many crops. Whether establishment of irrigation infrastructure is economically 
warranted cannot be answered in this study, but additional water at the right time has 
potential to increase short rain yields. Maize and sorghum appeared to benefit relatively little 
from such measures. 

Cotton production would also benefit from additional water supply, because it has to grow 
through one dry season. As discussed earlier, producing cotton can be risky, because this 
crop is vulnerable to factors other than yield. Product quality can be too low to be profitable, 
if it rains during harvest season. 

High potential was identified for cassava and sweet potato. Both of these crops thrive in 
climates that are warmer than present-day Busia and Homa Bay. They are thus expected to 
do well in the study region in the future. The same was true for mango, banana and 
pineapple, for which climatic conditions were almost optimal. 

The main climate factor that was responsible for climate-induced yield losses in annual crops 
was not rainfall but temperature. At the same time, temperature is the climate parameter that 
is most predictable. All climate models agree that temperature in the study region will rise 
substantially over the 21st century. The most promising strategy for reducing crop 
vulnerability to climate change is thus breeding for heat tolerance or introduction of drought 
tolerant new crop species and varieties. Establishment of multi-strata agroforestry is also a 
promising adaptation option. Temperatures under an open tree canopy can be several 
degrees cooler than they would be in full sunlight. As long as competition between trees and 
crops for water and nutrients can be controlled, or additional production resources provided 
were they are lacking, such agroforestry systems, which are already present in the study 
region, could be a viable adaptation option. 

For some crops, modeling results indicated high potential for index-based weather 
insurance. This was particularly true for cotton, as well as for a number of crops during the 
short rains. For these, rainfall variability had a major effect on yields, and it should be 
possible to capture this in an index that describes abundance of rainfall at both ends of the 
rainy season. For cotton, rainfall between the rainy seasons may also be worth considering. 
While high temperatures also had a strong negative effect on yields, the feasibility of 
designing an index around temperature variables must be investigated in more detail. This 
will depend greatly on how accurately APSIM captures crop responses to high temperatures. 
In the current version of the model, these are built-in constants for each crops, while only the 
numbers of thermal units required for reaching each crop developmental stage are variety-
specific. Yield observations, coupled with actual weather observations are needed for 
validating the relationship. The best index for use in designing insurance schemes is 
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probably the projected yield by a crop model, provided that the model is well calibrated for 
local soils and crops. A crop model integrates all effects of weather on yields, and thus 
provides a better indicator of yield potentials than a more restricted index would allow. 

For evaluating the feasibility of a weather insurance scheme for local conditions in the Lake 
Victoria Basin, an evaluation of the effects of other drivers of crop yields is recommended. It 
seems quite likely that the more important climate-related impacts on crop yields will be 
caused by indirect effects, such as higher pest and disease pressure. Such factors can 
amplify the effects of climate, or even counteract direct climatic effects. For example, while a 
cool, moist season may be good for the crops, it may also favor development of fungal 
diseases, which may eliminate the positive weather effects on crop yields. If these effects 
are found to be of similar magnitude to the direct effects of weather, designing an insurance 
scheme around these factors may be more promising than one focused on weather alone. 
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6. Climate analogues of the study region 
One strategy for identifying suitable adaptation options for climate change scenarios is 
climate analogue analysis. This approach is based on the premise that for most places and 
most climate projections, an existing place can be found, that currently has that climate. In 
other words, the objective is to find a place, where the current climate resembles the climate 
that is projected for the study region in the future. Such locations were identified for one site 
from each of the target counties. The procedure was based on mean monthly minimum 
temperatures, mean monthly maximum temperatures and mean monthly rainfall for the 
selected locations, for all climate scenarios described above. Euclidean distances between 
these values and the respective values in the baseline scenario were then calculated for 
each grid cell of the baseline climate grid within East Africa. The location, at which the 
Euclidean distance between projected future conditions and baseline conditions was lowest, 
was accepted as the best available climate analogue. In this study it was not possible to 
physically visit any analogue locations, so that this method could only be used as an 
illustration tool. The maps below thus simply present the distribution of analogue locations, 
as well as the distribution of climatically similar sites to selected future scenarios in the study 
region. 

6.1. Climate analogues of Lower Busia 

Climate analogues of Lower 
Busia

 
Figure 51. Climate analogue locations of Lower Busia. The black dot indicates the current location of the sites, 
and the colored dots are the current places that most closely resemble the climate projected for Lower Busia 
in the future. 

Climate analogue locations of Lower Busia were scattered across East Africa (Figure 51). 
For three long-term climate scenarios, analogue locations were situated as far away as the 
Congo River (CSIRO A2a 2080s), western Central African Republic (CSIRO A2a 2050s) or 
the Tanzanian coast north of Dar es Salam (HadCM3 A2a 2080s). Most analogue locations, 
however, were close to inland water bodies in East Africa, either scattered around Lake 



 

71 
 

Victoria, close to Lake Albert at the border between Uganda and the Democratic Republic of 
Congo (DRC) border or near Lake Tanganyika at the border between Burundi and the DRC. 
While these sites are much closer to current-day Busia, the climate there is quite different 
due to lower elevations. While Busia is at roughly 1150 m a.s.l., many analogue sites were 
several hundred meters lower. 

6.2. Climate analogues of Upper Homa Bay 

Climate analogues of Upper Homa Bay 

 
Figure 52. Climate analogue locations of Upper Homa Bay. The black dot indicates the current location of the 
sites, and the colored dots are the current places that most closely resemble the climate projected for Lower 
Busia in the future. 

For Upper Homa Bay, only one climate analogue (for the HadCM3 A2a 2080s scenario) was 
more than 100 km from the current location of this site (Figure 52). All other analogue 
locations were around Lake Victoria, but most were at lower elevation than the Baseline 
location. Depending on the time slice, analogue sites were between 50 and 400 meters 
lower than the current location. This shows that where a pronounced elevation gradient 
exists, the most likely climate analogues of high-elevation locations are at lower elevation 
within the same region. These analogue sites are locations where candidate technologies 
and crop varieties for climate change could be sourced or tested. The search for adapted 
technologies could be extended to all places with similar climate, based on the same kind of 
Euclidean distance approach that was used for identifying the climate analogues shown 
above (Figure 53). 
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Figure 53. Climatic distance between the projected climate for Upper Homa Bay for the 2080s, according to 
the CCCMA climate model and the B2a greenhouse gas emissions scenario. The red circle indicates the current 
location of Upper Homa Bay, whereas the green circle is the best analogue location. Smaller values for the 
climatic distance indicate closer proximity between projected climate at Upper Homa Bay and current climate 
at the respective grid cell. All red areas are thus relatively good climate analogues of Upper Homa Bay for this 
particular climate scenario. The digital attachment to this report contains similar maps for five locations and all 
climate scenarios. 
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7. Recommendations for follow-up studies 
As mentioned earlier, all results presented in this report, and in the supporting digital 
materials, were produced from proxy data, and a wide range of assumptions were necessary 
to arrive at these results. While for the purposes of a rough assessment this seemed like an 
acceptable strategy, a lot more data would ideally be collected and input into the models, in 
order to ensure that results are truly site-specific. 

Most importantly, information on crop varieties grown in the study counties should be 
collected. This would include yield levels of all major crops, as well as the thermal time 
requirements of the various crop stages, which are an important input into the APSIM crop 
model. Better soil data is also needed. Relying only on global FAO data is too crude an 
approach for making site-specific decisions. Moreover, for actual adaptation planning or for 
designing a site-specific crop weather insurance product, knowledge about the distribution of 
soil types within the region is essential. In collecting soil data, information about soil 
hydraulic properties is particularly important. Management practices by local farmers should 
also be assessed, because specifications about crop management are needed by APSIM. 

It should also be kept in mind that climate responses quantified in this study only include 
direct effects of weather on crop yield. Yet much of the yield variability in the region likely 
stems from indirect effects, or from phenomena that are unrelated to weather. Pests and 
diseases are a major factor that is influenced by weather. This effect can amplify or 
compensate the direct weather effects. An assessment of the impact of such factors on crop 
yields and consideration of including such factors in a potential insurance scheme is thus 
also recommended. 
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Project Brief 
 

 

Seizing opportunities in a changing climate 

 
Climate change is a reality and is taking place around us. Communities are compelled to 
adapt to this situation. Therefore we must understand and plan for the potential impact of a 
changing climate, which is already visible in shifting weather patterns and extremes in 
droughts or floods. Recognizing the positive opportunities that climate change can offer, and 
making the most of them, will, contribute to successful adaptation. 

 

Adaptation to Climate Change and Insurance (ACCI) is a bilateral project between the 
Kenyan and German Governments, funded by the German Federal Ministry for the 
Environment, Nature Conservation and Nuclear Safety (BMU) and the Government of 
Kenya. It is implemented by the Kenyan Ministry of Agriculture and GIZ – Deutsche 
Gesellschaft für Internationale Zusammenarbeit. 

 

The goal of the ACCI project is to enable farmers and small-scale enterprises to increase 
their capacity to adapt to climate change in Homa Bay and Busia County. 

 

ACCI through its partners supports 
 ► Systematic collection, analysis and dissemination of information about climate 

change and related risks 
 ► Dissemination of adapted site specific good agricultural practices 
 ► Promotion of insurance products as measures to mitigate climate risks 
 ► Monitoring of local adaptation capacity to climate change 

 

ACCI collaborates with public and private sectors to provide these services to farmers. The 
extension structure of the Ministry of Agriculture is the main implementing partner. In 
addition, local NGOs, CBOs, insurance companies and financial institutions are involved in 
implementation. The project started at the beginning of 2011 and will run until the end of 
2013. 

 

 



 
 

 


