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The decisionSupport package 
 
Decision-makers often wish to have a quantitative basis for their decisions, but 
many variables they have to consider cannot be precisely quantified, at least not 
without unreasonable effort. The major objective of (prescriptive) decision analysis 
is to support decision-making processes faced with this problem (Luedeling and 
Shepherd, 2016). Decision analysis can make forecasts of decision outcomes without 
precise numbers, as long as probability distributions describing the possible values 
for all variables can be estimated. The decisionSupport package (Luedeling and 
Göhring, 2017) implements this as a Monte Carlo simulation, which generates a 
large number of plausible system outcomes, based on random numbers for each 
input variable that are drawn from user-specified probability distributions. It also 
conducts a sensitivity analysis (based on Projection-to-Latent-Structures 
regression) to highlight uncertain variables that have large impacts on model 
outputs (Luedeling and Gassner, 2012; Wold et al., 2001). If the distribution of 
predicted system outcomes doesn’t imply a clearly preferable decision option, these 
variables can then be targeted by decision-supporting research (Luedeling et al., 
2015). 
 
Example – Controlled burning for ecological conservation in forests of the 
American West 
 
The ecology of the conifer forests of the American west is largely shaped by 
wildfires. Many ecologists recommend regular and low-intensity burns to manage 
the build-up of combustible understory materials (shrubs, fallen branches). Not all 
municipalities or regions implement these practices. Failure to follow recommended 
controlled burning may lead to the build-up of fire stock and increase the frequency 
and severity of large wildfires. Such fires have destroyed many western ecosystems 
in the recent past. 
 
The code provided simulates the decision of forest managers to use controlled fires 
in conifer forests vs. running the risk of severe fire. This is done through the use of a 
Monte Carlo analysis with 10,000 model runs based on probability distributions for 
all uncertain variables. These distributions aim to represent the full range of 
possible values for each component of the model. For example, the cost of controlled 
burning may vary greatly with remoteness and topography of forests. Also the 
frequency at which these controlled fires are necessary may vary with weather 
events such as storms and droughts. There is often no ‘hard data’ for many such 
variables, which can paralyze the decision-making processes or lead decision-
makers to conclude that large research efforts are needed, before a decision can be 



made. The decisionSupport package allows simulation of the costs and benefits of 
complex decisions based on the full range of values deemed plausible for all 
variables. This is useful for determining whether a clearly preferable course of 
action can already be delineated based on the present state of knowledge. It also 
allows identifying key uncertainties that should be reduced by decision-supporting 
research. 
 

 
 
Graphic illustrating the decision to apply controlled burning management or 
not.  
 
 
The decisionSupport function in the package requires two inputs: 

1) a data table (.csv format) specifying the names and distributions for all 
uncertain variables 

2) an R function that predicts decision outcomes based on the variables named 
in the data table 

 
For this example, both inputs are provided to illustrate the process. Usually, data 
table and model have to be customized to fit the particulars of a specific decision. 
 
The data table 
 
The data table (wildfire_input_table.csv) contains all variables used in the model. 
Their distributions are described by a 90% confidence interval, which is specified by 
lower (5% quantile) and upper (95% quantile) bounds, as well as the shape of the 
distribution. This example uses four different distributions: 

1) const – a constant value (not really a distribution) 
2) norm – a normal distribution 



3) tnorm_0_1 – a truncated normal distribution that can only have values 
between 0 and 1 (useful for probabilities; note that 0 and 1, as well as 
numbers outside this interval are not permitted as inputs) 

4) posnorm – a normal distribution truncated at 0 (only positive values 
allowed) 

 
For a full list of possible distributions, type ‘?random.estimate1d’ in R. When 
specifying confidence intervals for truncated distributions, note that approximately 
5% of the random values should ‘fit’ within the truncation interval on either side. If 
there isn’t enough space, the function will generate a warning (usually it will still 
work, but the inputs may not look like you intended them to). 
 
Default distributions are provided for all variables, but feel free to make 
adjustments by editing the .csv file in a spreadsheet program. 
 
 
The decision model 
 
Before you start developing the decision model, open R and download and load the 
decisionSupport package (version >1.102). 
 
install.packages("decisionSupport") 
library(decisionSupport) 
 
You could simply start developing the decision model now, but since the model 
function will be designed to make use of variables provided to it externally (random 
numbers drawn according to the information in the data table), you’ll need to define 
sample values for all variables, if you want to test pieces of the code during the 
development process. This can be done manually, but it is more easily accomplished 
with the following helper function ‘make_variables’: 
 
make_variables<-function(est,n=1) 
{ x<-random(rho=est, n=n) 
    for(i in colnames(x)) assign(i, 
     as.numeric(x[1,i]),envir=.GlobalEnv) 
} 
 
(This function isn’t included in the decisionSupport package, because it places the 
desired variables in the global environment. This isn’t allowed for functions 
included in packages on R’s download servers.) 
 
Applying make_variables to the data table (with default setting n=1) generates 
one random number for each variable, which then allows you to easily test code 
you’re developing: 
 
filepath<-[folder, where the ‘wildfire_input_table.csv’ file is saved] 



 
make_variables(estimate_read_csv(paste(filepath, 
  "wildfire_input_table.csv",sep=""))) 
 
You can now start developing the model, which has to be designed as a function for 
R, with the two arguments x and varnames, as well as a (named or unnamed) list of 
numbers as output: 
 
[YOUR_MODEL]<-function(x,varnames) 
{ 
[freely programmable content, relying only on inputs specified in the 
data table] 
return(list([OUTPUTS])) 
} 
 
Below is an example model to calculate the Net Present Value (NPV) for the decision 
to manage forests with controlled burns: 
controlled_burning<-function(x, varnames) 
{ 
 #simulate occurrence of fire (random event) 
  fire<-chance_event(fire_risk,value_if=1,n=n_years) 
 #set up time series vectors with one value for each simulation year 
  severe_fire_contr_burn<-rep(0,n_years) 
  severe_fire_no_burn<-rep(0,n_years) 
  env_imp_contr_burn<-rep(0,n_years) 
  env_imp_no_burn<-rep(0,n_years) 
  fire_fighting_cost_contr_burn<-rep(0,n_years) 
  fire_fighting_cost_no_burn<-rep(0,n_years) 
     
 #simulate occurrence of controlled burns (random event) 
  controlled_burns<-chance_event(controlled_burning_frequency, 
    value_if=1,n=n_years) 
     
 #calculate the change in the initial combustible biomass (Mg/ha) 
  biomass_contr_burn<-initial_biomass 
  biomass_no_burn<-initial_biomass 
     
  for(y in 2:n_years) #for all years but year one 
   { 
    if(controlled_burns[y]) 
     biomass_contr_burn[y]<-biomass_after_burning*(1+ 
      biomass_accumulation_rate_with_controlled_burning/100) else 
       biomass_contr_burn[y]<-biomass_contr_burn[y-1]* 
        (1+biomass_accumulation_rate_with_controlled_burning/100) 
    biomass_no_burn[y]<-biomass_no_burn[y-1]* 
     (1+biomass_accumulation_rate_without_controlled_burning/100) 
         
 #calculate the severity and impact of fire 
    if(fire[y]) 



        { 
 #calculate when the accumulated combustible biomass (Mg/ha) that leads 
 # to severe fire is surpassed 
          if(biomass_contr_burn[y]>severity_threshold) 
            severe_fire_contr_burn[y]<-1 
          if(biomass_no_burn[y]>severity_threshold) 
            severe_fire_no_burn[y]<-1 
             
 #calculate the combustible biomass (Mg/ha) after a fire in a forest 
 # with controlled burning 
          if(severe_fire_contr_burn[y]) 
           biomass_contr_burn[y]<-biomass_after_severe_fire else 
            biomass_contr_burn[y]<-biomass_after_mild_fire 
             
 #calculate the combustible biomass (Mg/ha) after a fire in a forest 
 # without controlled burning 
          if(severe_fire_no_burn[y]) 
           biomass_no_burn[y]<-biomass_after_severe_fire else 
            biomass_no_burn[y]<-biomass_after_mild_fire 
             
 #calculate the environmental impact (USD) after a fire in a forest 
 # with controlled burning 
          if(severe_fire_contr_burn[y]) 
           env_imp_contr_burn[y]<-env_imp_severe_fire else 
            env_imp_contr_burn[y]<-env_imp_mild_fire 
             
 #calculate the cost of wildfire (USD) in a forest with controlled 
 # burning 
          if(severe_fire_contr_burn[y]) 
           fire_fighting_cost_contr_burn[y]<- 
             fire_fighting_cost_severe_fire else 
           fire_fighting_cost_contr_burn[y]<- 
             fire_fighting_cost_mild_fire 
             
 #calculate the environmental impact (USD) after a fire in a forest 
 # without controlled burning 
          if(severe_fire_no_burn[y]) 
           env_imp_no_burn[y]<-env_imp_severe_fire else 
            env_imp_no_burn[y]<-env_imp_mild_fire 
             
 #calculate the cost of wildfire (USD) in a forest without controlled 
 # burning 
          if(severe_fire_no_burn[y]) 
           fire_fighting_cost_no_burn[y]<- 
             fire_fighting_cost_severe_fire else 
           fire_fighting_cost_no_burn[y]<- 
             fire_fighting_cost_mild_fire 
             
        } #end of simulating severity and cost of fire 
  } #end of year loop 



     
 #calculate the cost (USD) of forest management through 
 # controlled burning and without controlled burning 
  costs_contr_burn<- 
    cost_of_controlled_burning*controlled_burns+ 
      fire_fighting_cost_contr_burn 
  costs_no_burn<-fire_fighting_cost_no_burn 
     
 #calculate the bottom-line (USD) for forest management 
 # through controlled burning and without controlled burning 
  bottomline_contr_burn<-(-costs_contr_burn-env_imp_contr_burn) 
  bottomline_no_burn<-(-costs_no_burn-env_imp_no_burn) 
     
 #calculate the benefit of controlled burning over no 
 # controlled burning 
  benefit_of_controlled_burning<- 
    bottomline_contr_burn-bottomline_no_burn 
     
 #calculate the Net Present Value (NPV) for forest management 
 # with controlled burning 
  NPV_controlled_burning<- 
   discount(benefit_of_controlled_burning,discount_rate=discount_rate, 
     calculate_NPV=TRUE) 
     
  return(list(NPV_controlled_burning=NPV_controlled_burning)) 
     
} 
 
Note that this model uses two ‘helper functions’ included in the decisionSupport 
package: 

1) chance_event for determining whether an event occurs or not based on a 
specified probability 

2) discount for adjusting net benefits for time preference (a standard 
economic practice). With the attribute calculate_NPV, the function 
automatically calculates the Net Present Value (the sum of discounted 
values) 

 
Perform the Monte Carlo simulation with 10,000 model runs: 
decisionSupport( 
  inputFilePath=paste(filepath,"wildfire_input_table.csv", 
   sep=""),  
  outputPath=paste(filepath,"MCResults",sep=""), 
  write_table=TRUE, 
  welfareFunction=controlled_burning, 
  numberOfModelRuns=10000, 
  functionSyntax="plainNames" 
) 



 
#the arguments are the following: 
# inputFilePath = input file with estimates 
# outputPath = output folder 
# write_table = specifies whether all outputs should be saved as 
a table 
# welfareFunction = the decision model function 
# numberOfModelRuns = the number of model runs for the Monte 
#   Carlo simulation 
# functionSyntax = technical parameter that allows specifying 
#   variables simply by the names given in the data table 
#   (otherwise a notation like x$[variable_name] would be needed) 
 
This function produces a table of all inputs and outputs of the 10,000 model runs 
(mcSimulationResults.csv; only if write_table=TRUE), as well as two outputs 
for each model output variable: 

1) a histogram showing all 10,000 output values 
2) a variable-importance-plot that illustrates the sensitivity of model outputs to 

variation in each input variable (this is derived by statistically relating 
outputs to inputs using Projection-to-Latent-Structures (PLS) regression; 
results are also saved in a table) 

 
All results are stored in the folder specified by outputPath. The two summary 
tables ‘mcSummary.csv’ and ‘welfareDecisionSummary.csv’ provide summaries 
of the results shown in the histogram. 
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