
Simulating the cost effectiveness of controlled burning
with the decisionSupport R package

Illustrative example by Cory Whitney and Eike Luedeling, University of Bonn, Germany

The decisionSupport package

Decision-makers often wish to have a quantitative basis for their decisions, but
many variables they have to consider cannot be precisely quantified, at least not
without unreasonable effort. The major objective of (prescriptive) decision analysis
is to support decision-making processes faced with this problem (Luedeling and
Shepherd, 2016). Decision analysis can make forecasts of decision outcomes without
precise numbers, as long as probability distributions describing the possible values
for all variables can be estimated. The decisionSupport package (Luedeling and
Göhring, 2017) implements this as a Monte Carlo simulation, which generates a
large number of plausible system outcomes, based on random numbers for each
input variable that are drawn from user-specified probability distributions. It also
conducts a sensitivity analysis (based on Projection-to-Latent-Structures
regression) to highlight uncertain variables that have large impacts on model
outputs (Luedeling and Gassner, 2012; Wold et al., 2001). If the distribution of
predicted system outcomes doesn’t imply a clearly preferable decision option, these
variables can then be targeted by decision-supporting research (Luedeling et al.,
2015).

Example – Controlled burning for ecological conservation in forests of the
American West

The ecology of the conifer forests of the American west is largely shaped by
wildfires. Many ecologists recommend regular and low-intensity burns to manage
the build-up of combustible understory materials (shrubs, fallen branches). Not all
municipalities or regions implement these practices. Failure to follow recommended
controlled burning may lead to the build-up of fire stock and increase the frequency
and severity of large wildfires. Such fires have destroyed many western ecosystems
in the recent past.

The code provided simulates the decision of forest managers to use controlled fires
in conifer forests vs. running the risk of severe fire. This is done through the use of a
Monte Carlo analysis with 10,000 model runs based on probability distributions for
all uncertain variables. These distributions aim to represent the full range of
possible values for each component of the model. For example, the cost of controlled
burning may vary greatly with remoteness and topography of forests. Also the
frequency at which these controlled fires are necessary may vary with weather
events such as storms and droughts. There is often no ‘hard data’ for many such
variables, which can paralyze the decision-making processes or lead decision-
makers to conclude that large research efforts are needed, before a decision can be

made. The decisionSupport package allows simulation of the costs and benefits of
complex decisions based on the full range of values deemed plausible for all
variables. This is useful for determining whether a clearly preferable course of
action can already be delineated based on the present state of knowledge. It also
allows identifying key uncertainties that should be reduced by decision-supporting
research.

Graphic illustrating the decision to apply controlled burning management or
not.

The decisionSupport function in the package requires two inputs:

1) a data table (.csv format) specifying the names and distributions for all
uncertain variables

2) an R function that predicts decision outcomes based on the variables named
in the data table

For this example, both inputs are provided to illustrate the process. Usually, data
table and model have to be customized to fit the particulars of a specific decision.

The data table

The data table (wildfire_input_table.csv) contains all variables used in the model.
Their distributions are described by a 90% confidence interval, which is specified by
lower (5% quantile) and upper (95% quantile) bounds, as well as the shape of the
distribution. This example uses four different distributions:

1) const – a constant value (not really a distribution)
2) norm – a normal distribution

3) tnorm_0_1 – a truncated normal distribution that can only have values
between 0 and 1 (useful for probabilities; note that 0 and 1, as well as
numbers outside this interval are not permitted as inputs)

4) posnorm – a normal distribution truncated at 0 (only positive values
allowed)

For a full list of possible distributions, type ‘?random.estimate1d’ in R. When
specifying confidence intervals for truncated distributions, note that approximately
5% of the random values should ‘fit’ within the truncation interval on either side. If
there isn’t enough space, the function will generate a warning (usually it will still
work, but the inputs may not look like you intended them to).

Default distributions are provided for all variables, but feel free to make
adjustments by editing the .csv file in a spreadsheet program.

The decision model

Before you start developing the decision model, open R and download and load the
decisionSupport package (version >1.102).

install.packages("decisionSupport")
library(decisionSupport)

You could simply start developing the decision model now, but since the model
function will be designed to make use of variables provided to it externally (random
numbers drawn according to the information in the data table), you’ll need to define
sample values for all variables, if you want to test pieces of the code during the
development process. This can be done manually, but it is more easily accomplished
with the following helper function ‘make_variables’:

make_variables<-function(est,n=1)
{ x<-random(rho=est, n=n)
 for(i in colnames(x)) assign(i,
 as.numeric(x[1,i]),envir=.GlobalEnv)
}

(This function isn’t included in the decisionSupport package, because it places the
desired variables in the global environment. This isn’t allowed for functions
included in packages on R’s download servers.)

Applying make_variables to the data table (with default setting n=1) generates
one random number for each variable, which then allows you to easily test code
you’re developing:

filepath<-[folder, where the ‘wildfire_input_table.csv’ file is saved]

make_variables(estimate_read_csv(paste(filepath,
 "wildfire_input_table.csv",sep="")))

You can now start developing the model, which has to be designed as a function for
R, with the two arguments x and varnames, as well as a (named or unnamed) list of
numbers as output:

[YOUR_MODEL]<-function(x,varnames)
{
[freely programmable content, relying only on inputs specified in the
data table]
return(list([OUTPUTS]))
}

Below is an example model to calculate the Net Present Value (NPV) for the decision
to manage forests with controlled burns:
controlled_burning<-function(x, varnames)
{
 #simulate occurrence of fire (random event)
 fire<-chance_event(fire_risk,value_if=1,n=n_years)
 #set up time series vectors with one value for each simulation year
 severe_fire_contr_burn<-rep(0,n_years)
 severe_fire_no_burn<-rep(0,n_years)
 env_imp_contr_burn<-rep(0,n_years)
 env_imp_no_burn<-rep(0,n_years)
 fire_fighting_cost_contr_burn<-rep(0,n_years)
 fire_fighting_cost_no_burn<-rep(0,n_years)

 #simulate occurrence of controlled burns (random event)
 controlled_burns<-chance_event(controlled_burning_frequency,
 value_if=1,n=n_years)

 #calculate the change in the initial combustible biomass (Mg/ha)
 biomass_contr_burn<-initial_biomass
 biomass_no_burn<-initial_biomass

 for(y in 2:n_years) #for all years but year one
 {
 if(controlled_burns[y])
 biomass_contr_burn[y]<-biomass_after_burning*(1+
 biomass_accumulation_rate_with_controlled_burning/100) else
 biomass_contr_burn[y]<-biomass_contr_burn[y-1]*
 (1+biomass_accumulation_rate_with_controlled_burning/100)
 biomass_no_burn[y]<-biomass_no_burn[y-1]*
 (1+biomass_accumulation_rate_without_controlled_burning/100)

 #calculate the severity and impact of fire
 if(fire[y])

 {
 #calculate when the accumulated combustible biomass (Mg/ha) that leads
 # to severe fire is surpassed
 if(biomass_contr_burn[y]>severity_threshold)
 severe_fire_contr_burn[y]<-1
 if(biomass_no_burn[y]>severity_threshold)
 severe_fire_no_burn[y]<-1

 #calculate the combustible biomass (Mg/ha) after a fire in a forest
 # with controlled burning
 if(severe_fire_contr_burn[y])
 biomass_contr_burn[y]<-biomass_after_severe_fire else
 biomass_contr_burn[y]<-biomass_after_mild_fire

 #calculate the combustible biomass (Mg/ha) after a fire in a forest
 # without controlled burning
 if(severe_fire_no_burn[y])
 biomass_no_burn[y]<-biomass_after_severe_fire else
 biomass_no_burn[y]<-biomass_after_mild_fire

 #calculate the environmental impact (USD) after a fire in a forest
 # with controlled burning
 if(severe_fire_contr_burn[y])
 env_imp_contr_burn[y]<-env_imp_severe_fire else
 env_imp_contr_burn[y]<-env_imp_mild_fire

 #calculate the cost of wildfire (USD) in a forest with controlled
 # burning
 if(severe_fire_contr_burn[y])
 fire_fighting_cost_contr_burn[y]<-
 fire_fighting_cost_severe_fire else
 fire_fighting_cost_contr_burn[y]<-
 fire_fighting_cost_mild_fire

 #calculate the environmental impact (USD) after a fire in a forest
 # without controlled burning
 if(severe_fire_no_burn[y])
 env_imp_no_burn[y]<-env_imp_severe_fire else
 env_imp_no_burn[y]<-env_imp_mild_fire

 #calculate the cost of wildfire (USD) in a forest without controlled
 # burning
 if(severe_fire_no_burn[y])
 fire_fighting_cost_no_burn[y]<-
 fire_fighting_cost_severe_fire else
 fire_fighting_cost_no_burn[y]<-
 fire_fighting_cost_mild_fire

 } #end of simulating severity and cost of fire
 } #end of year loop

 #calculate the cost (USD) of forest management through
 # controlled burning and without controlled burning
 costs_contr_burn<-
 cost_of_controlled_burning*controlled_burns+
 fire_fighting_cost_contr_burn
 costs_no_burn<-fire_fighting_cost_no_burn

 #calculate the bottom-line (USD) for forest management
 # through controlled burning and without controlled burning
 bottomline_contr_burn<-(-costs_contr_burn-env_imp_contr_burn)
 bottomline_no_burn<-(-costs_no_burn-env_imp_no_burn)

 #calculate the benefit of controlled burning over no
 # controlled burning
 benefit_of_controlled_burning<-
 bottomline_contr_burn-bottomline_no_burn

 #calculate the Net Present Value (NPV) for forest management
 # with controlled burning
 NPV_controlled_burning<-
 discount(benefit_of_controlled_burning,discount_rate=discount_rate,
 calculate_NPV=TRUE)

 return(list(NPV_controlled_burning=NPV_controlled_burning))

}

Note that this model uses two ‘helper functions’ included in the decisionSupport
package:

1) chance_event for determining whether an event occurs or not based on a
specified probability

2) discount for adjusting net benefits for time preference (a standard
economic practice). With the attribute calculate_NPV, the function
automatically calculates the Net Present Value (the sum of discounted
values)

Perform the Monte Carlo simulation with 10,000 model runs:
decisionSupport(
 inputFilePath=paste(filepath,"wildfire_input_table.csv",
 sep=""),
 outputPath=paste(filepath,"MCResults",sep=""),
 write_table=TRUE,
 welfareFunction=controlled_burning,
 numberOfModelRuns=10000,
 functionSyntax="plainNames"
)

#the arguments are the following:
inputFilePath = input file with estimates
outputPath = output folder
write_table = specifies whether all outputs should be saved as
a table
welfareFunction = the decision model function
numberOfModelRuns = the number of model runs for the Monte
Carlo simulation
functionSyntax = technical parameter that allows specifying
variables simply by the names given in the data table
(otherwise a notation like x$[variable_name] would be needed)

This function produces a table of all inputs and outputs of the 10,000 model runs
(mcSimulationResults.csv; only if write_table=TRUE), as well as two outputs
for each model output variable:

1) a histogram showing all 10,000 output values
2) a variable-importance-plot that illustrates the sensitivity of model outputs to

variation in each input variable (this is derived by statistically relating
outputs to inputs using Projection-to-Latent-Structures (PLS) regression;
results are also saved in a table)

All results are stored in the folder specified by outputPath. The two summary
tables ‘mcSummary.csv’ and ‘welfareDecisionSummary.csv’ provide summaries
of the results shown in the histogram.

References

Luedeling, E. and Gassner, A., 2012. Partial Least Squares regression for analyzing

walnut phenology in California. Agricultural and Forest Meteorology, 158:
43-52.

Luedeling, E. and Göhring, L., 2017. decisionSupport: Quantitative Support of
Decision Making under Uncertainty, CRAN archive; https://cran.r-
project.org/web/packages/decisionSupport/.

Luedeling, E. et al., 2015. Fresh groundwater for Wajir – ex-ante assessment of
uncertain benefits for multiple stakeholders in a water supply project in
Northern Kenya. Frontiers in Environmental Science, 3: Article 16, 1-18.

Luedeling, E. and Shepherd, K., 2016. Decision-focused agricultural research.
Solutions, 7(5): 46-54.

Wold, S., Sjostrom, M. and Eriksson, L., 2001. PLS-regression: a basic tool of
chemometrics. Chemom. Intell. Lab. Syst., 58(2): 109-130.

https://cran.r-project.org/web/packages/decisionSupport/
https://cran.r-project.org/web/packages/decisionSupport/

